

Fast Fourier Transform IP Core v1.0
Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014 Data Sheet

IPC0002 | October 2014
Data Sheet

www.girdsystems.com Page | 1

Introduction
The FFT/IFFT IP core is a highly configurable Fast Fourier Transform (FFT) and Inverse Fast Fourier
Transform (IFFT) VHDL IP component. The core performs an 𝑁-point complex forward or inverse
Discrete Fourier Transform (DFT), where 𝑁 is any power-of-four value, up to 65,536. The constituent
radix-4 processing stages utilize a decimation-in-frequency (DIF) decomposition and internal structure.

The FFT/IFFT core accepts a length 𝑁 frame of complex data samples, represented as a pair of fixed-
point two’s complement numbers. The streaming architecture supports continuous loading of data into
the core. After an initial transform latency, data can be continually unloaded from the core to support
high throughput applications. The number of bits used to represent input data samples and twiddle
factors are independently configurable at build-time. For this architecture, a block floating-point data
path representation is used to account for bit growth at the output of each processing stage and to
maintain a high degree of precision. The input frame of data samples is presented to the core in natural
order. The output frame of data from the core in the transform-domain can be configured for natural or
bit-reversed ordering.

The source code for the FFT/IFFT core was developed in a portable, vendor-agnostic manner. The
underlying components of the core were developed to infer and take advantage of hardware features
found in many FPGAs from various vendors, including Block RAM and hardware multipliers/DSP blocks.
The degree of inference of these platform-specific features is controlled via vendor-specific tool settings
during the synthesis process.

Additional architectures are also available from GIRD Systems providing other options for transform
latency, core throughput, resource utilization, and arithmetic scaling.

Features
• Complex FFT/IFFT operation, run-time configurable on a per-frame basis
• Configurable transform sizes: 𝑁 = 4𝑞, maximum 65,536; 𝑞 = 8
• Configurable data sample precision
• Configurable twiddle factor precision
• Configurable bit-reversed or natural output ordering
• Fixed-point data interface
• Block floating-point data path for high precision
• Supports streaming processing (continuous data feed)
• Utilizes FPGA architecture features (multiplier/DSP blocks, Block RAM, etc.) via inference
• Bit-accurate MATLAB model and testbench
• VHDL testbench

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 2

Interface Description
The component interface is shown in Figure 1.

Block Floating-Point Streaming Radix-4 FFT

gNUM_STAGES
gDATA_WIDTH
gTWIDDLE_WIDTH
gORDERING
gNUM_MULT_STAGES

CLOCK
RESET_N
CLEAR
START
DATA_I
DATA_Q
MODE

FFT_DATA_I
FFT_DATA_Q

BLK_EXP
VALID

Figure 1: FFT/IFFT Core Top-Level Interface

Generics
The generic values can be modified at compile time to configure the FFT/IFFT core for the targeted
application. Table 1 lists the generics and their purpose.

Table 1: FFT/IFFT Core Generics

Generic Name Type Description
gNUM_STAGES natural The number of stages, 𝑞, needed to generate an 𝑁

length power-of-four transform in the form 𝑁 = 4𝑞.
gDATA_WIDTH natural Bit width of input/output data.
gTWIDDLE_WIDTH natural Bit width precision of twiddle factors.
gORDERING std_logic Specifies output data ordering:

'0': bit-reversed ordering
'1': natural ordering

gNUM_MULT_STAGES natural Number of pipeline stages used in multiplier operations.

Inputs
The signal inputs to the FFT/IFFT core are defined in Table 2.

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 3

Table 2: FFT/IFFT Core Input Signals

Input Name Type Description
CLOCK std_logic Core processing clock.
RESET_N1 std_logic Active low, asynchronous reset.
CLEAR1 std_logic Active high, synchronous reset.
START std_logic Specifies the first sample in an input data

frame. 𝑁 − 1 input samples must follow this
pulse on consecutive clock cycles.

DATA_I signed(gDATA_WIDTH-1:0) Real (in-phase) input data samples. The bit
width is specified by gDATA_WIDTH.

DATA_Q signed(gDATA_WIDTH-1:0) Imaginary (quadrature) input data samples.
The bit width is specified by gDATA_WIDTH.

MODE std_logic Specifies the mode of operation:
‘0’: forward FFT
‘1’: inverse FFT
This value is accepted when START is
asserted.

Outputs
The signal outputs from the FFT/IFFT core are defined in Table 3.

Table 3: FFT/IFFT Core Output Signals

Output Name Type Description
FFT_DATA_I signed(gDATA_WIDTH-1:0) Real (in-phase) output data samples in the

transform domain. The bit width is specified
by gDATA_WIDTH.

FFT_DATA_Q signed(gDATA_WIDTH-1:0) Imaginary (quadrature) output data samples
in the transform domain. The bit width is
specified by gDATA_WIDTH.

BLK_EXP natural Indicates the block exponent. The output
data from each radix-4 stage can grow by up
to 3 bits; BLK_EXP tracks the amount of bit
shift scaling that was applied to prevent
overflow. For example, a value of 7 indicates
samples were shifted right by 7 bits, thus the
magnitude of the output is:
 𝐹𝐹𝐹_𝐷𝐷𝐷𝐷 × 2𝐵𝐵𝐵_𝐸𝐸𝐸.

VALID std_logic Indicates valid transformed samples are being
output from the core.

1 Both a synchronous and asynchronous reset are provided for portability. Only one of the reset circuits should be
used depending on the target platform. The unused port should be tied to a logical constant (‘1’ for RESET_N, ‘0’
for CLEAR).

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 4

Timing Diagram
An overall sample timing diagram for a 1,024-point FFT is shown in Figure 2. In this example, 3
consecutive frames of input data are streamed into the core on the DATA_I and DATA_Q ports. As
noted previously, the two reset circuits are mutually exclusive, thus in this example the RESET_N signal
is tied to logic-‘1’ and the CLEAR signal is pulsed high at the start of the test.

The START signal is pulsed high for a single clock cycle at the start of each frame of input data,
coincident with the first sample. The next 𝑁 − 1 consecutive input samples following a START pulse are
considered part of the same frame. Figure 3 shows a magnified view of the start of frame #2 and also
shows a MODE change coincident with the START pulse for frame #2 to perform a forward FFT.

After an initial transform calculation latency, data is streamed out on the FFT_DATA_I and FFT_DATA_Q
ports and is indicated to be valid by the VALID port. The BLK_EXP output port indicates the total amount
of scaling applied during the FFT operation. Figure 2 shows the 3 frames of output data being
consecutively streamed out; for the 1,024-point example, the VALID signal is high for 3,072 clock cycles
over all 3 frames of output data. In the example given in Figure 2, all 3 output frames have a block
exponent of 7. Figure 4 shows a magnified view of the start of output frame #1.

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 5

Figure 2: Overall Timing Diagram

Figure 3: Start of Input Frame #2 Timing Diagram

Figure 4: Start of Output Frame #1 Timing Diagram

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 6

File List
Table 4 lists the VHDL source files included with the project. Source files are also included for both block
floating-point and floating-point MATLAB models as listed in Table 5. Additionally, testbenches for VHDL
and block floating-point and floating-point MATLAB models are included as listed in Table 6 and Table 7.

Table 4: FFT/IFFT Core VHDL Source File List

File Name Description
radix4_bfly.vhd Radix-4 butterfly operations
radix4_dft.vhd FFT signal processing top level
radix4_stage.vhd Radix-4 stage processing and control
radix4_stage0.vhd Radix-4 processing and control for the first stage
radix4_dft_pkg.vhd Package file for useful types and functions
clamp_pkg.vhd Package file for saturation functions
complex_multiplier_growth.vhd Complex multiplier with data path growth support
dp_ram.vhd Dual port RAM
math_pkg.vhd Package file for math convenience functions
multiplier_s.vhd Signed multiplier
shift_pkg.vhd Package file for bit shifting functions
shift_ram.vhd RAM-based shift register
types_pkg.vhd Package file for commonly used user-defined types

Table 5 : FFT/IFFT Core MATLAB Model Source File List

File Name Description
radix4_bfly.m Radix-4 butterfly operations
radix4_dft.m FFT signal processing top level
radix4_stage.m Radix-4 stage processing and control
clamp.m Saturates input data
shift_down.m Performs bit shifting operations on input data

Table 6: FFT/IFFT Core VHDL Testbench File List

File Name Description
radix4_dft_tb.vhd Testbench associated with top level VHDL source
run_tb.do Modelsim-compatible script to compile source and

testbench
testbench_pkg.vhd Package file for testbench convenience functions
textio_pkg.vhd Package file for text input/output; overloads/extends

std.textio

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 7

Table 7: FFT/IFFT Core MATLAB Testbench File List

File Name Description
radix4_dft_tb.m Testbench associated with top level MATLAB model

Functional Description
The Discrete Fourier Transform, of length 𝑁, takes 𝑁 complex time domain samples and expresses them
in the frequency domain. The equation for the forward DFT is given as:

𝑋[𝑘] = �𝑥𝑛 ∙ 𝑒−𝑗2𝜋𝜋𝜋/𝑁
𝑁−1

𝑛=0

The inverse DFT reverses this process, transforming frequency domain signals into the time domain. The
equation for the inverse DFT is given as:

𝑥𝑛 =
1
𝑁
� 𝑋𝑘 ∙ 𝑒𝑗2𝜋𝜋𝜋/𝑁
𝑁−1

𝑘=0

The implementation of this core uses a modified Sande-Tukey decimation-in-frequency (DIF) algorithm
to reduce computational time and complexity over a brute force DFT implementation. The core
supports power-of-four transform lengths formed from radix-4 stages up to 65,536 points. A high-level
block diagram of the FFT/IFFT core architecture is shown in Figure 5.

Radix-4
Stage

Radix-4
Stage

Generated Radix-4 Stages

Reordering
Buffer

(Optional)

Input I/Q
Samples

Output I/Q
Samples

Figure 5 : Top Level Radix-4 FFT Block Diagram

The inverse operation is supported by swapping the real and imaginary components of the input
samples, performing the forward FFT, then swapping the real and imaginary components of the output
samples. Note that this core differs slightly from the classical IFFT definition in that it does not perform

the 1
𝑁

 scaling as part of the internal implementation. The final reordering buffer shown in Figure 5 is

optional and is used to reorder the bit-reversed output samples to natural ordering.

For illustrative purposes, assume 𝑁 = 1,024. Referring to Figure 5, 5 radix-4 stages would automatically
be generated to perform the 1,024 length transform. Each stage produces 𝑁 intermediate samples,
which are forwarded to the next stage. Finally, an optional reordering buffer changes the output
ordering into natural order.

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 8

The key to the FFT processing in this architecture is the radix-4 stage and butterfly engine as shown in
Figure 6. This implementation uses a quad output radix-4 engine to minimize processing latency. Data
from the previous stage is reordered via reordering buffers (dual-port RAMs). As data from the previous
stage is being written to the reordering buffers, the bit growth detection block calculates the amount of
bit growth caused by butterfly/twiddle operations in the previous stage. Bit growth is calculated based
on the maximum/minimum value generated in an output data set from a given stage. Data read out of
the reordering buffer is scaled down based on the calculated bit growth to prevent overflow from bit
growth in previous stages and maximize precision.

Scaled data is then processed by the quad output radix-4 butterfly engine. The bit width of the data
path through the quad output radix-4 butterfly engine and the reordering buffers grows by up to 3 bits
(i.e., a total bit width of gDATA_WIDTH + 3) to prevent overflow for the current stage. Twiddle factors
are applied via a complex multiplier. The wider, processed samples are forwarded on to the next stage.

Reordering
Buffers

Quad Output Radix-4 Engine

×
×

×

Twiddle ROMs

Stage Control Logic

I/Q
Samples

Block FP
Scaler

Delay
 (Shift RAM)

Bit Growth
Detection

I/Q
Samples

Figure 6: Radix-4 Stage Block Diagram

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 9

Resource Utilization
To generate resource utilization estimates, build synthesis and implementation was performed using
generic inputs shown in Table 8, producing a 1,024-point FFT/IFFT with 16-bit I/Q data.

Table 8: Generic Values Used for Resource Utilization

Generic Type Value
gNUM_STAGES natural 5
gDATA_WIDTH natural 16
gTWIDDLE_WIDTH natural 16
gORDERING std_logic '1'
gNUM_MULT_STAGES natural 3

Resource estimates for several candidate Xilinx devices are shown in Table 9. Resource estimates for
several candidate Altera devices are shown in Table 10. The asynchronous reset circuit for all Altera
estimates and the synchronous reset circuit was used for all Xilinx estimates. For Xilinx devices, Vivado
2014.1 was used to generate resource estimates. For Altera devices, Quartus II 11.1 SP2 was used in
estimate generation. Both vendors include several synthesis and implementation options that will
impact resource utilization and maximum achievable circuit frequency (Fmax). The estimates reported
in this document use the default values provided by each vendor for all synthesis and implementation
options. The user can adjust vendor-specific settings to impact the performance/resource utilization
tradeoff for their application. Contact GIRD Systems for assistance in tuning build parameters and
constraints for specific application needs. Note that several other factors may cause variation in
resource utilization and circuit performance estimates, such as overall device utilization, routing
congestion, place-and-route/fitter seed, etc.

Table 9: Xilinx Device Utilization Estimates

Device Logic Block RAMs Multipliers Fmax
Slice
LUTs

Slice
Registers

RAMB36s RAMB18s DSP48E1s MHz

Artix 7
XC7A200T -1 8,224 12,994 35 20 60 167.48 MHz
Kintex 7
XC7K325T -1 9,401 13,680 29 6 60 268.53 MHz
Virtex 7
XC7VX485T -1 9,402 13,680 29 6 60 253.61 MHz

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 10

Table 10: Altera Device Utilization Estimates

Device Logic Block RAMs Multipliers Fmax
LEs/ALUTs Registers M9Ks M144Ks M20Ks DSP 9x9 /

Blocks
MHz

Cyclone III
EP3C40 C8 9,555 12,507 92 - - 96 104.54 MHz
Cyclone IV
EP4CGX30 C8 9,581 12,507 92 - - 96 103.46 MHz
Stratix IV
EP4SE230 C4 7,904 11,640 81 0 - 96 244.74 MHz
Stratix V
5SGSED6K C4 7,079 12,422 - - 70 24 238.04 MHz

Simulation
Most VHDL simulators should be capable of simulating the FFT/IFFT IP core. During development and
testing of the core, ModelSim DE 10.1d and MATLAB 2009a were used for simulation. No additional
external libraries or toolboxes are required. There are 3 provided testbenches: a block floating-point
VHDL testbench, a bit-accurate block floating-point MATLAB testbench, and a floating-point MATLAB
testbench. The VHDL testbench depends on stimulus data generated by the MATLAB block floating-
point testbench. Thus, the MATLAB block floating-point testbench must be run prior to running the
VHDL testbench.

For the block floating-point MATLAB testbench, several simulation and core parameters must be set to
configure the test. The ‘gen_vectors’ flag configures if new stimulus data should be generated or
existing data should be used. The ‘num_frames’ variable defines the number of frames to process in the
current test. Note that if ‘num_frames’ is modified, new stimulus data should be generated so that the
correct number of input samples are available. Each entry in the ‘modes’ vector defines the
forward/reverse operation for each frame. The length of the ‘modes’ vector should be equal to
‘num_frames’. The core-specific parameters, like transform length, data width, schedule, etc., are
defined in the ‘params’ structure.

In the VHDL testbench, there are several simulation and core configuration parameters that have
corresponding parameters in the MATLAB block floating-point testbench. To achieve a bit-true
comparison with the MATLAB model, these parameters must have the same values as the corresponding
MATLAB testbench parameters. Table 11 lists the relevant MATLAB and corresponding VHDL simulation
parameters. A ModelSim-compatible DO script is also included to compile the VHDL source and
testbench.

http://www.girdsystems.com/

Fast Fourier Transform IP Core v1.0

Block Floating-Point Streaming Radix-4 Architecture

IPC0006 | October 2014
Data Sheet

www.girdsystems.com Page | 11

Table 11 : Simulation Parameters

MATLAB Parameter VHDL Parameter Description
num_frames cFRAMES Number of frames to test
params.data_width cDATA_WIDTH Bit width of the data samples
params.twiddle_width cTWIDDLE_WIDTH Bit width of twiddle factors
params.num_stages cNUM_STAGES Number of transform stages
modes cMODE Forward or inverse operation
params.ordering cORDERING Bit-reversed or natural output

ordering

http://www.girdsystems.com/

	Introduction
	Features
	Interface Description
	Generics
	Inputs
	Outputs

	Timing Diagram
	File List

	Functional Description
	Resource Utilization
	Simulation

